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Abstract 

Recently smart cement, highly sensing chemo-thermo-piezoresistive cement has 

been developed with a real-time monitoring system for applications in cemented wells 

and all types of civil infrastructures including micropiles. The smart cement is a bulk 

sensor and there are no sensors buried in it. In this study, laboratory and field test data 

were used to verify the Artificial Intelligent (AI) models with Vipulanandan models for 

smart cement applications. The performance of the smart cement in the cemented wells 

will be very much influenced by the hydration of the cement which is affected by the 

environment and ground geological conditions. Hence laboratory tests were performed to 

collect the data for AI model training and verification and also set the baseline for 

comparing it with the cement hydration in the field test model simulating the cemented 

wells and micropiles. Electrical resistivity, a material property, has been selected to 

monitor the smart cement from the time of mixing to the entire service life. The 

resistivity changed by over 12.85 times (1285%) in 28 days under the room curing 

condition, indicating the sensitivity of resistivity for monitoring. Smart cement is 

piezoresistive cement and the piezoresistivity strain at compressive stress failure for the 

smart cement was over 250% , over 1250 times (125,000%) higher than the compressive 

failure strain of 0.2%. The field well was installed using standard casing of  inches 

(245 mm) in diameter and was cemented using the smart cement with enhanced 

piezoresistive properties. The field well was designed, built, and used to demonstrate the 

concept of real time monitoring of the flow of smart cement and hardening of the cement 

in place. The well was installed in soft swelling clay soils to investigate the sensitivity of 

the smart oil well cement. A new method has been developed to measure the electrical 

resistivity of the materials in the laboratory and field using the two probe method. The 

well instrumentation was outside the casing with 120 probes, 18 strain gages and 9 

thermocouples. The strain gages and thermocouples were used to compare the sensitivity 

of these instruments to the two probe resistance measure in-situ in the cement. The 

electric probes used to measure the resistance were placed vertically at 15 levels and each 

level had eight horizontal probes. Change in the resistance of hardening cement was 



Proceedings                                                                                      CIGMAT-2020 Conference & Exhibition 

I-15 
 

continuously monitored since the installation of the field well for over 4.5 years (1600 

days) and over 10,000 data have been collected. Also, the temperature and strain changes 

in the cement were measured at various depths. The field well cement performances were 

very much influenced by the weather changes and the depth in the ground and the 

resistivity change varied by 270% to 950% based on the depth of the cement sheath. In 

addition, the pressure testing showed the piezoresistive response of the hardened smart 

cement and a piezoresistive model has been developed to predict the pressure in the 

casing from the change in resistivity in the smart cement.  

 

Both laboratory and field data including weather data were used in this analyses. 

Total of over 1500 data were used in this study and 80% of the data were used for 

training the AI model and 20% of the data were used to verify the AI model predictions 

with Vipulanandan model prediction. Initially various AI models with multiple layers of 

artificial neural networks were first calibrated using the generalized regression neural 

network (GRNN) and back propagation neural network (BPNN) and then evaluated for 

the predictions of the remaining 20% of the test data. The predicted evaluation was done 

using the statistical parameters such as coefficient of determination (R
2
) and root mean 

square error (RMSE). The four layer artificial neural network AI model was selected for 

predicting the experimental results.  The AI model didn’t predict the initial curing of the 

smart cement well, since resistivity reduced to a minimum value and then continuously 

increased. The AI models predicted the long-term laboratory smart cement curing and 

piezoresisitive behavior and field data of resistivity changes with depth and time very 

well and were comparable to the Vipulanandan p-q curing and piezoresistivity model 

behavior models. Based on the coefficient of determination (R
2
) and root mean square 

error (RMSE), Vipulanandan models predicted the experimental results very well. Also 

the AI model predicted the temperature and annual rainfall weather changes over the 4.5 

years very well. 

 

1. Introduction 

 

With the advancement of various technologies, there is a need to integrate them 

for more efficient field applications for real-time monitoring, minimizing failures and 

safety issues. Use of artificial intelligent (AI) in various applications with multiple 

variables are becoming popular. Cementing the oil wells have been used for over 200 

years cementing failures during installation and other stages of operations have been 

clearly identified as some of the safety issues that have resulted in various types of delays 

in the cementing operations and oil production and also has been the cause for some of 

the major disasters around the world. For successful oil well cementing operations, it is 

essential to monitor it real-time because of the varying environmental and geological 

conditions with depth and also performance of the cement sheath after hardening during 

the entire service life. 

 

Artificial Intelligence (AI), otherwise known as machine learning or 

computational intelligence, is the science and engineering aimed at creating intelligent 

tools, devices and machines. Its application in solving complex problems and case-based 

complications in various field applications has become more and more popular and 
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acceptable over time (Opeyemi et al., 2016). AI techniques are developed and deployed 

worldwide in a myriad of applications as a result of its symbolic reasoning, explanation 

capabilities, potential and flexibility (Demrican et al. 2011). Most of the artificial 

intelligence techniques or tools have shown tremendous potential for generating accurate 

analysis and results from large historical databases, the kind of data an individual may 

find extremely difficult for conventional modelling and analysis processes (Shahab 

2000). AI is currently employed in various sections of oil and gas Industry, from 

selection of drill bits to well bore risk analysis. In recent years, there has been a drastic 

increase in the application of AI in petroleum industry due to presence of digital data and 

case studies. AI can provide real time prediction in oil and gas industry from selection, 

monitoring, diagnosing, predicting and optimizing, thus leading to better production 

efficiency and profitability. (Opeyemi et al., 2016) 

 

Wells (Oil, Gas and Water) 

 

Well construction has a history of over 100 years. When installing oil, gas and 

water production wells, cement is used to fill the annular space between varying 

geological formations with depth and well casings and horizontal pipelines to enhance the 

performance in-situ for decades after installation. Based on the application, wells can be 

tens to thousands of feet deep in the ground. The cement will support the casing and 

pipelines and protect them against corrosion and impact loading, restrict the movement of 

fluids between formations, and isolate productive and nonproductive zones.  Well cement 

is used under different conditions of exposures compared to the cement used in the 

conventional construction industry. The strength of well cement usually depends on 

factors such as time and conditions of curing, environmental conditions, slurry design and 

use of additives and any additional treatments to the cement. Different additives have 

been used in the cement to mitigate the strength degradation (Choolaei et al. 2012). The 

real-time monitoring of the changes in the cement in-situ is critical to evaluate the 

performance of the cemented wells (Vipulanandan et al. 2015-2018). Recent case studies 

on cementing failures have clearly identified several issues that resulted in various types 

of delays in the cementing operations. Also preventing the loss of fluids to the formations 

and proper well cementing have become critical issues in well construction to ensure 

wellbore integrity because of varying downhole conditions (Labibzadeh et al., 2010 and 

Vipulanandan et al., 2015). The catastrophic accident in the Gulf of Mexico in April 2010 

is one of the world’s worst oil spills (Shadravan et al., 2012). Therefore, proper 

monitoring and tracking the entire process of well cementing become important to ensure 

cement integrity during the service life of the well (Vipulanandan et al., 2015-2018).  

 

Micropiles 



Proceedings                                                                                      CIGMAT-2020 Conference & Exhibition 

I-17 
 

The use of micropiles has grown significantly since their conception development 

in the 1950s. Micropiles are generally used when there are difficult ground conditions, 

such as natural or man-made obstructions, sensitive ground with adjacent structures, 

limited access/low headroom and/or karstic geology.  They are commonly used to replace 

deteriorating foundation systems, for the renovation of structures, to support structures 

affected by adjacent construction, for seismic retrofitting or in-situ reinforcement 

including embankment, slope and landslide stabilization. 

 

Micropile configuration includes a steel casing and/or high strength steel 

reinforcements bonded to the bearing soil or rock with the cement grout. Micropile is a 

non-displacement pile with the typical diameter of 5 to 12 inches over 200 feet in length 

to carry loads of over 200 tons. Uniqueness about the micropile is that it can be install at 

any angle based on the applications.  

 

Smart cement (sensing cement) 

 

Based on the applications, Portland cements and well cement were mixed with 

less than 0.1% conductive filler (carbon fibers, basaltic fiber or a mixture with diameter 

in the micrometer range) to make the cement chemo-thermo-piezoresistive material 

(Vipulanandan et al., 2014-2018). Smart cement can sense any changes going on inside 

the borehole during cementing and during curing after the cementing job. The smart 

cement can sense the changes in the water cement ratio, different additives, and any 

pressure applied to the cement sheath in terms of piezoresistivity (Vipulanandan et al. 

2015). Recent studies have demonstrated that smart cement can also detect gas leaks and 

also earthquakes. The failure compressive strain for the smart cement was 0.2% at peak 

compressive stress (Vipulanandan et al. 2015b) and the resistivity change is of the order 

of two hundred percent (200%) making it over 1000 times more sensitive. 

 

Artificial Intelligent (AI) 
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Figure 1. Artificial Intelligent (AI) with Integrated Artificial Neural Networks 

(ANN)  

 

An artificial neural network (ANN) is a computatioanl numerical model which is 
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based on, at some level, brain like learning as opposed to traditional computing which is 

based on programming. The model consists of interconnected groups of artificial 

neurons, which simulate the structure of the brain to store and use experience, and 

processes information using a connectionist approach. Artificial neural network is an 

adaptive system which trains itself (changes its structure) during the learning phase based 

on the information flowing through the network. 

The researchers who have studied neural networks aimed to model the 

fundamental cell of the living brain: neuron. The recognized US pioneers who first 

introduced the concept of artificial neural network were neurophysiologist Warren 

McCulloch and the logician Walter Pitts in 1943. They developed a simple model of 

variable resistors and summing amplifiers that represent the variable synaptic connections 

or weights which link neurons together and the operation of the neuron body, 

respectively. The popularity of neural network increased in 1962 with the introduction of 

‘perceptron’ by Frank Rosenblatt who used the term to refer to a system which 

recognized images using the McCulloch and Pitts model (Alexander 1990). 

Artificial Intelligence (AI) can be defined as a collection of new analytical 

algorithms and tools that attempts to imitate and predict situations. These Artificial 

intelligence techniques exhibit an ability to learn and deal with new situations. Artificial 

neural networks, evolutionary programming and fuzzy logic are among the paradigms 

that are classified as Artificial Intelligence (Sadiq et al., 2000). The main root principles 

of AI include reasoning, knowledge, planning, learning, communication, perception and 

ability to manipulate objects (Bhattacharyya, 2011).  

Artificial Neural Networks (ANN) 

 

Neural Network research was first published by McCulloh and Pitts in 1943 

(Hubbert et al., 1957). The artificial neural network is a numerical model that mimics the 

functional aspects of neural network in human brain system (Behnood et al., 2018). It 

consists of many artificial neurons interconnected where each of them gives a single 

output (Y) induced from all inputs (Xi) (Hammoudi et al., 2019). The predictive 

capability of artificial neural networks comes from the ability to learn and adapt to new 

situations in which additional data becomes available. In an artificial neural network, a 

training set comprising of input and output data is entered and the neural network 

algorithms attempt to map the process by which inputs become outputs (Sadiq et al., 

2000). ANN is a multilayer perceptron (MLP) including three layers (Fig. 1). The first 

layer (input layer) consists of neurons representing the independent variables (inputs Xi), 

the second one is the hidden layer (Hi, f(Hi)), and the last one is the ANN responses 

(output layer, representing AI). The number of neurons required in the hidden layer is 

determined in a way to minimize both prediction error and number of neurons.  

 

 The general forms of the equations are as follows: 

 

                                Hj = ∑WijXi + bj   ……………………………………………….(1) 

 

Where Xi represent the inputs (Fig. 1, neurons I) and subscript  i represents the inputs (I 

and summation 1 to n). The Wij is the weighing matrix for each input term Xi connecting 

it to the hidden term Hj, The bj is the bias input function. 
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 Using Sigmoid as the transfer function f(Hj) is represented as  

 

                            )   ……………………………………… (2) 

 

Two accurate neural network algorithms are Back Propagation Neural Networks 

(BPNN) and Generalized Regression Neural Networks (GRNN). The following are the 

summaries on these algorithms. 

Back Propagation Neural Networks (BPNN) 

BPNN are the most widely used type of artificial neural networks (Sadiq et al., 

2000). BPNN consists of an input layer that is propagated through the network with set of 

weights to have a predicted output. BPNN is set with an objective to adjust the set of 

weights so that the difference between output prediction and required output is reduced. 

Generalized Regression Neural Networks (GRNN) 

The generalized regression neural network (GRNN) is a feedforward neural 

network based on non-linear regression theory consisting of three or more layers: the 

input layer (one layer), the pattern layer with the summation layer (one or more layers), 

and the output layer.  While the neurons in the first three layers are fully connected, each 

output neurons is connected only to some processing units in the summation layer. The 

individual pattern units compute their activation using a radial basis function (bj), which 

is typically the Gaussian kernel function (Sadiq et al., 2000). The training of the GRNN is 

quite different from the training used for the BPNN. It is completed after presentation of 

each input-output vector pair from the training set to the GRNN input layer only once. 

What this means is that both the centers of the radial basis functions of the pattern units 

and the weights in connections of the pattern units and the processing units in the 

summation layer are assigned simultaneously.  

Development of Neural Network and Design 

 

The data used in this study were obtained from set of laboratory and field scale 

studies on smart cement. The obtained data comprises of electrical resistance, 

piezoresistive strain data from lab for 28 days and field for a period of 4.5 years. 

Database preparation for training of neural network represents very important in neural 

network modelling. The suggested neural network model does not consider weather and 

temperature factors. Neural network architecture with different hidden layers was used to 

predict laboratory and field measurements. Attempts were made to use hidden layers 

from one to four to obtain a good fit to the data. BPNN architecture with 4 hidden layers 

exhibited better correlation to laboratory and field measurements. The coefficient of 

determination (R
2
) and root mean-square-error (RMSE) were used to evaluate the 

statistical significance of the ANN models. 

 

Smart Cement 

Cement is the largest quantity of material manufactured in the world, 4.2 trillion tons 

in 2017, and is used in many applications. Chemo-thermo-piezoresisitive smart cement 

has been recently developed (Vipulanandan et al. 2014-2017) which can sense and real-

time monitor the many changes happening inside the cement during cementing of wells 



Proceedings                                                                                      CIGMAT-2020 Conference & Exhibition 

I-20 
 

to concreting of various infrastructure to the entire service life of the structures. In 

concrete smart cement is the binder which can sense the changes within the concrete. The 

smart cement can sense the changes in the water-to-cement ratios, different additives, 

contamination and pressure applied to the cement sheath or concrete in terms of chemo-

thermo-piezoresistivity. The failure compressive strain for the smart cement was 0.2% at 

peak compressive stress and the resistivity change is of the order of several hundred 

percentage making it over 500 times (50,000%) more sensitive (Vipulanandan et al. 

2014-2017). 

 

2. Objective 

The smart cement behavior must be quantified during various stages of 

construction and service life of the cemented well.  In this study the smart cement 

behavior was characterized using artificial intelligent models and compared to the 

Vipulanandan models to verify the predictions of the experimental results. The specific 

objectives were as follows: 

i. Investigate the available AI tools for potential applications based on the selected 

data trends. 

ii. Characterize the curing and piezoresisitive behavior of smart cement from 

laboratory test data using the selected AI model and compare it to the 

Vipulanandan models. 

iii. Compare the AI predictions of changes in the hardening smart cement sheath 

resistivity over 4.5 years along the smart cemented field well with multiple 

variables (ground conditions, depths, time, and weather) with the available 

analytical models.  

iv. Predict the sensitivity of the piezoresistive response of the hardened smart cement 

sheath using the AI and analytical model. 

 

The data for this study was collected from the laboratory tests and field test and total 

of over 1,500 data was used.  

 

3. Materials and Methods  

Smart cement is a chemo-thermo-piezoresistive material and the changes in the 

directional electrical properties were monitored during the testing to quantify the 

changes. Both class G and class H cements were used in this study. The electrical 

resistivity is a second order tensor so the changes can be interpreted in three orthogonal 

directions to monitor the changes in the smart cement. Series of experiments were 

performed on the smart cement from the time of mixing to hardened state behavior using 

a new characterization approach with the two-probes and alternative current to monitor 

changes in electrical properties. This real time monitoring method can be easily adopted 

in the field. Effects of contamination and temperature on the directional properties were 

investigated. Also compressive tests were performed to monitor the changes in the smart 

cement cured under various conditions. Various types and levels of AI models are being 

used to predict the behaviors and comparing them to some of the analytical models. 

Total of four wires were placed in the mold and the vertical distances between any 

two wires were the same. Embedment depth of the conductive wire was 1 inch.  For 

setting time monitoring and compressive stress tests, cylinders with the diameter of 50 
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mm (2 inches) and a height of 100 mmm (4 inches) were prepared. For real-time 

monitoring, a two-probe method was selected (Vipulanandan et al. 2013 & 2017). In this 

study, three or more specimens were prepared and tested under every condition 

investigated and the data were used in the analyses. 

 

Electrical resistivity 

Digital resistivity meter was used to measure the resistivity of the cement slurries 

and semi-solids. The measurable resistivity range for the instrument was 0.01Ω-m to 400 

Ω-m. The device was calibrated using standard solutions of sodium chloride (NaCl).  

The electrical resistance was measured using an inductance, capacitance, and resistance 

(LCR) meter during the cement curing and compression/pressure test in the laboratory 

and field. To minimize the contact resistances, the resistance was measured at 300 kHz 

using the two-wire method. The electrical resistivity (ρ) was related to the measured 

electrical resistance (R) based on the Eqn.1 (Vipulanandan et al. 2013 & 2017).   

 

                                                    ………………………………….(3) 
 

where parameters K and G are related to the material being tested and method used. For 

cement experimentally it has been proven that the parameter G is zero. Hence the 

normalized change in resistivity with the changing conditions (curing, stress) can be 

represented as follows:  

 

                                              ……………………………………..(4)  

 

In this study resistivity (ρ) was used for all monitoring changes in the laboratory and 

field. 

 

Piezoresistivity test 

The cylindrical specimen with the diameter of 2 inches and a height of 4 inches 

(50mm Dia.*100 mm height) was capped (sulfur capping) and tested at a predetermined 

controlled displacement rate. Compression tests were performed on cement samples after 

28 days of curing using a hydraulic compression testing machine (ASTM C 39). 

Piezoresistivity describes the change in the electrical resistivity of a material under 

pressure. Since oil well cement serves as the pressure-bearing part of wells in real 

applications, the piezoresistivity of smart cement was investigated under compressive 

loading. During compression testing, electrical resistance was measured along the stress 

axis and laterally. To eliminate the polarization effect, alternating current resistance 

measurements were made using a LCR meter at a frequency of 300 kHz (Vipulanandan et 

al. 2013).  

 

In this study chemo-thermo-piezoresistive smart cement (Vipulanandan et al. 

2014-2018) was used to develop the concrete and grout. For the curing and compressive 

behavior studies cement slurry was cast in plastic cylindrical molds with diameter of 50 

mm and a height of 100 mm. Two conductive wires were placed in all of the molds to 
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measure the changing in electrical resistivity. At least three specimens were tested under 

each condition investigated in this study.  

 

Compression Test (ASTM C39)     

The cylindrical specimens 9concrete, cement and grout) were capped and tested at a 

predetermined controlled displacement rate. Tests were performed in the Tinious Olsun 

machine at a controlling the displacement rate to 0.125 mm per minute. In order to 

measure the strain, a commercially available extensometer (accuracy of 0.001% strain) 

was used. During the compression test, the change in resistance was measured 

continuously using the LCR meter. Two probe method with alternative current (AC) at 

300 kHz frequency was used in order to minimize the contact resistances (Vipulanandan 

and Amani, 2015). The change in resistance was monitored using the two-probe method, 

and the parameter in Eqn. (2) was used relate the changes in resistivity to the applied 

stress. 

4. Results and Analyses 

 

During curing the electrical properties of the smart cement varied with the curing 

conditions in the laboratory and field. New quantification concepts have been developed 

using artificial intelligent models to characterize the sensing of the smart cement during 

curing and during loading to quantify the piezoresisitive behavior in the laboratory and 

field.  

 

Laboratory Study 

 

Curing of cement 

 

Initial resistivity was measured immediately after mixing the smart cement. Initial 

resistivity of the smart cement was 1.05 Ωm (Table 1). During the curing process under 

room condition (relative humidity of 50% and temperature of 72
o
F (22

o
C)), the resistivity 

rapidly changed with the time as shown in Fig. 2. Hence, there are several parameters that 

can be used in monitoring the curing (hardening process) of the cement. The parameters 

are initial resistivity (ρo), minimum resistivity (ρmin), time to reach the minimum 

resistivity (tmin) and resistivity after 24 hours of curing (ρ24). After initial mixing, the 

electrical resistivity reduced to a minimum value (ρmin), and then it gradually increased 

with time. Time to reach minimum resistivity, tmin, can be used as an index of speed of 

chemical reactions and cement set times. With the formation of resistive solid hydration 

products which block the conduction path, resistivity increased sharply with curing time. 

The following increase in electrical resistivity was caused by the formation of large 

amounts of hydration products in the cement matrix. Finally, a relatively stable increase 

in trend was reached by the ions diffusion control of hydration process, and resistivity 

increased steadily with the curing time.  

 

Table 1: Electrical Resistivity Model parameters for smart cement in laboratory for 28 

days of curing. 
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Cement Type 
Initial Resistivity, ρo 

(Ω-m)  
ρmin (Ω-m) 

t min 

(min) 

to 

(min) 
R

2
  p1 q1 

Smart Cement 1.05  + 0.03 0.96  + 0.01 80  + 5.0 110 0.99 0.61 0.38 
 

Vipulanandan p-q curing model 

Based on experimental results, a theoretical model proposed by Vipulanandan and 

Paul (1990) was modified and used to predict the electrical resistivity of smart cement 

during hydration. The Vipulanandan p-q curing model (Vipulanandan et al. 2015 ) is 

defined as follows: 

 

 …………………………….(5)  

 

Where is theelectrical resistivity (Ω-m); t is the curing time (minutes); min: minimum 

electrical resistivity (Ω-m); tmin: time corresponding minimum electrical resistivity (min), 

p1 to and q1(t) are model parameters. In general, model parameters are influenced by 

the composition of the cement and curing conditions (temperature, humidity and stress). 

The parameter t0 is influenced by the initial resistivity 0.  

 0.5 Day Curing 

 

The normal trend of the resistivity during the curing of cement is that the 

resistivity decreases up to a certain time (tmin) to reach the minimum resistivity (ρmin) and 

then increases with time. The value of initial resistivity of smart cement was 1.05 Ω.m. 

immediately after mixing, which can be used as a quality control measure in the field. 

The value of minimum resistivity was 0.96 Ω.m. and the time for minimum resistivity 

was 80 minutes after mixing (Figure 2). The resistivity after 0.5 day (12 hours) of curing 

was 2.27 Ω.m, more than doubled in resistivity compared to the initial resistivity. The 

resistivity after 12 hours (0.5 day) was over 116% compared to the initial resistivity.  

For training the AI models with one, two, three and four layers of ANN, total of 120 data 

were used with the GRNN approach. Based on the training results, four layer AI model 

was selected to do the predictions. Additional 30 data was used to predict the smart 

cement curing trend using the AI model and compare it to the Vipulanandan Curing 

Model. In predicting the new data, for the four layered AI model the coefficient of 

determination (R
2
) was 0.61 and the RMSE (root mean square error) was 0.21 Ω.m. The 

AI model prediction is compared to the experimental data in Fig. 2. The AI model over 

predicted the initial resistivity by 3% and also couldn’t predict the minimum resistivity.  

Vipulanandan Model parameters p1 and q1 were 0.61 and 0.38  (Table 1). This 

model predicted the curing trend very well including the minimum resistivity (Fig. 2). 

The coefficient of determination (R
2
) was 0.98 and the RMSE (root mean square error) 

was 0.05 Ω.m (Table 2).   
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Figure 2. Electrical Resistivity of Smart Cement in the Laboratory During 0.5 Day 

of Curing. 

 

1 Day Curing 

 

The resistivity after 1 day (24 hours) of curing was 3.46 Ω.m, more than 230% 

increase compared to the initial resistivity. The resistivity after 24 hours (1 day) was over 

50% higher compared to the resistivity after 12 hours (0.5 day).  

For training the AI models with one, two, three and four layers of ANN, total of 160 data 

were used with the GRNN approach. Based on the training results, four layer AI model 

was selected to do the predictions. Additional 40 data was used to predict the smart 

cement curing trend using the AI model and compare it to the Vipulanandan Curing 

Model. In predicting the new data, for the four layered AI model the coefficient of 

determination (R
2
) was 0.92 and the RMSE (root mean square error) was 0.19 Ω.m. The 

AI model prediction is compared to the experimental data in Fig. 3. The AI model 

predicted the 24 hour resistivity very well.  

Vipulanandan Model parameters p1 and q1 were 0.61 and 0.38 (Table 1). This 

model predicted the curing trend very well including the minimum resistivity (Fig. 3). 

The coefficient of determination (R
2
) was 0.99 and the RMSE (root mean square error) 

was 0.08 Ω.m (Table 2).   
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Figure 3. Electrical Resistivity of Smart Cement in the Laboratory During 1 Day of 

Curing. 

 

28 Days of Curing 

 

The resistivity after 28 days of curing was 14.54 Ω.m, more than 1285% increase 

compared to the initial resistivity. The resistivity after 28 days of curing was over 320% 

higher compared to the resistivity after 24 hours (1 day).  This cleary indicates the 

sensitivity of resistivity to the cement curing. 

For training the AI models with one, two, three and four layers of ANN, total of 180 data 

were used with the GRNN approach. Based on the training results, four layer AI model 

was selected to do the predictions. Additional 45 data was used to predict the smart 

cement curing trend using the AI model and compare it to the Vipulanandan Curing 

Model. In predicting the new data, for the four layered AI model the coefficient of 

determination (R
2
) was 0.99 and the RMSE (root mean square error) was 0.20 Ω.m. The 

AI model prediction is compared to the experimental data in Fig. 4. The AI model 

predicted the 28 days of curing resistivity very well .  

Vipulanandan Model parameters p1 and q1 were 0.61 and 0.38 (Table 1). This 

model also predicted the curing trend very well (Fig. 4). The coefficient of determination 

(R
2
) was 0.99 and the RMSE (root mean square error) was 0.21 Ω.m (Table 2).   
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Figure 4. Electrical Resistivity of Smart Cement in the Laboratory During 28 Days 

of Curing. 

 

Table 2: Comparison of ANN Model and Vipulanandan Resistivity Model 

Predictions for Curing of Smart Cement. 

 

  ANN Model Curing Model 

Time R
2
 RMSE (Ω-m) R

2
 RMSE (Ω-m) 

T = 12 hours 0.61 0.21 0.98 0.05 

T = 1 Day 0.92 0.19 0.99 0.08 

T = 28 Days 0.99 0.20 0.99 0.21 

 

 

Piezoresistivity Behavior 

It is important to characterize the sensing property, resistivity change, of the smart 

cement under stress. The piezoresisitive responses (stress-resistivity strain relationship) 

for the smart cement is shown in Fig. 5 for 28 days cured smart cement. The 

piezoresistivity of the smart cement at failure after 28 day of curing  was 252% as 

shown in Fig. 5. The smart cement piezoresistive response was over 1250 times 

(125,000%) higher compared to the compressive failure strain of cement of 0.2%, which 

is used in the past for monitoring. This also clearly indicates the sensitivity of smart 

cement for stress monitoring in the cement. 

 

Vipulanandan p-q piezoresistivity model 

The Vipulanandan p-q piezoresistivity model was used to predict the observed 
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trends for the smart cement (Vipulanandan et al. 2014). The Vipulanandan p-q 

piezoresistive model is defined as follows: 

 

                           

……………………(6) 

 

where is the stress (psi or MPa); f: compressive stress at failure (MPa); 

 percentage of change in electrical resistivity due to the stress; 

 percentage of change in electrical resistivity at failure; ∆: 

change in electrical resistivity; initial electrical resistivity (= 0 MPa) and  p2 and 

q2are piezoresistive model parameters.  

 

28 Days of Curing 

 

It is important to quantify the piezoresisitive behavior of the smart cement. The 

specimens were cured under room condition and the stress- piezoresistive strain response 

was non-linear (Figure 5). 

For training the AI models with one, two, three and four layers of ANN, total of 80 data 

were used with the GRNN approach. Based on the training results, four layer AI model 

was selected to do the predictions. Additional 20 data was used to predict the smart 

cement piezoresistive behavior using the AI model and compare it to the Vipulanandan 

piezoresistive Model. In predicting the new data, for the four layered AI model the 

coefficient of determination (R
2
) was 0.99 and the RMSE (root mean square error) was 

0.20 MPa. The AI model prediction is compared to the experimental data in Fig. 5.  

Vipulanandan Model parameters p2 and q2 were 0.108 and 0.57 (Table 1). This 

model also predicted piezoresistive behavior very well (Fig. 5). The coefficient of 

determination (R
2
) was 0.99 and the RMSE (root mean square error) was 0.24 MPa 

(Table 3).  Both the AI model and Vipulanandan Piezoresistive Models predicted the 

behavior very well.  
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Figure 5: Piezoresistive Behavior of Smart Cement after 28 days of curing. 

 

Table 3: Correlation parameters for ANN model and Piezoresistivity model for 

smart cement after 28 days of curing. 

  ANN Model Piezoresistive Model 

Time 
R

2
 

RMSE 

(MPa) 
R

2
 

RMSE (MPa) 

28 Day 

Piezoresistivity 0.99 0.20 0.99 0.24 

 

 

Field Study  
After reviewing a few potential test sites, Energy Research Park (ERP) at the 

University of Houston, Houston Texas was selected to install the field well. Many factors 

including geology, swelling and soft clays, changing surrounding conditions (weather, 

ground water and active zone in the ground), environmental regulations and accessibility 

to the site for long-term monitoring had to be considered in selecting the test site since 

the focus of the study was to demonstrate the sensitivity of the smart cemented field well. 

The selected site had swelling clays with fluctuating moisture conditions (active zone) 

which represents the nearly the worst conditions that could be encountered when 

installing oil wells. The top 20 feet of the soil was swelling clay soil with liquid limit of 

over 50%. Based on ASTM classification, this soil was characterized as CH soil. The 

active zone in the Houston area is about 15 feet, indicating relatively large moisture 

fluctuation in the soil causing it to swell and shrink. The water table was 20 feet below 

ground and soil below the water table was also clay with less potential for swelling and 

the liquid limit was below 40%. Based on ASTM classification, this soil was 
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characterized as CL soil. 

 

 

 

 

 

 

 

 

 

Figure 6 Schematic View of the Field Well with the Instrumentation 
 

 

Top Level  

Middle Level 

Bottom Level 
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Instrumentation 

It has been shown that the two probes with AC current can be used to determine the 

electrical resistance changes in the smart cement and drilling fluid (Vipulanandan 2015 

(a)-(d)).  It was also important use other standard tools for measuring the changes in the 

cement sheath and compare it to the resistance changes. Because of practical reasons no 

instrument was placed on the casing and totally an independent system was developed to 

be place in the cement sheath. The probes were placed at various vertical depths at 15 

levels (Fig. 6). Also eight probes were placed horizontally at each level. Also nine stain 

gages and nine thermocouples were included in the instrumentation (Fig. 6).  

 
 

Installation of the Field Well 

A commercial company familiar with the drilling and cementing wells in an urban 

setting was selected to install the field well. A very large drilling truck with drilling with 

14 in diameter drill was used to drill the hole and place the 9
5
/8 in diameter standard steel 

casing. The total length of the casing was 42 feet and needed pieces (including well head 

and needed connections to lift the casing) were welded together to make a single unit. 

Initial 15 feet was drilled without any drilling fluid. Polymer based drilling fluid was 

used to drill the rest of the borehole. After completing the drilling the casing and the 

instrumentation units were centered and lowered into the borehole. Monitoring of the 

resistance between the probes, temperature and stains (straing gages) were measured. 

Pressure Test 

 To simulate a pressure test, air pressure (Pi) was applied inside the 0.8 in diameter 

tube to the entire depth of 40 feet (Fig. 15) to verify the piezoresistivity of the cement-

sheath.  Initially the electrical resistances (Ro in Ohms) were measured along the entire 

depth before applying the pressure. This test was done regularly to demonstrate the 

sensitivity of the smart cement to the applied small pressures of up to 80 psi (0.55 MPa).  

Environmental Factors – (Temperature and Rainfall) 

The behavior of smart cement in the field was affected by the outside 

environmental factors such as temperature, rainfall, stress, water table and swelling soft 

clay. In this study ANN model was compared with the Temperature model and 

cumulative rainfall model to predict the changes in temperature and rainfall over the past 

five years from 2015 to 2019.  

Temperature 

The average monthly atmospheric temperature fluctuated between 85 ᵒF to 48 ᵒF 

from 2015 to 2020 (Fig. 7).  

 

Vipulanandan Temperature Model 

The Vipulanandan temperature model was used to predict the average monthly 

temperature with time: 

 

                                        …………….……….. (7) 

 

 Where: A and B are model parameters, yo= initial correction factor for average 
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temperature, and 

 to = initial correction factor for the time. 

 

For training the AI models with one, two, three and four layers of ANN, total of 60 data 

were used with the BPNN approach. Based on the training results, four-layer AI model 

was selected to do the predictions. AI model was compared it to the Vipulanandan 

temperature Model. In predicting the temperature data, using the four-layered AI model 

the coefficient of determination (R
2
) was 0.94 and the RMSE (root mean square error) 

was 2.75
o
F. The AI model prediction is compared to the experimental data in Fig. 7.  

Vipulanandan Temperature Model parameters A, B, to and yo are 15.4
o
F, 1, 71.1 

year and 2.09
o
F respectively. The coefficient of determination (R

2
) was 0.91 and the 

RMSE (root mean square error) was 3.48
o
F (Table 4).  Both the AI model and 

Vipulanandan Temperature Models predicted the temperatures well (Fig.7).  

 

 

 
 

Figure 7 Comparing the Average Monthly Temperature from Year 2015 to 2020 

with the Model Predictions. 

Rainfall 

The cumulative annual rainfall varied from 51 to 80 inches from 2015 to 2020. 

The four flooding events during this period as shown in Fig. 7 (years 2015, 2016, 2017 

and 2019). 

 

Vipulanandan Rainfall Model 
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The mathematical model was used to predict the cumulative annual rainfall (RF) 

is using the Vipulanandan Correlation Model  (Vipulanandan et al. 1995-2018) is as 

follows: 

 

                                               …………………………………………...(8) 

  

Where the parameters C and D are model parameters and t is the month starting from 

January (equal to 1) to December (equal to 12). 

  

For training the AI models with one, two, three and four layers of ANN, total of 

60 data were used with the BPNN approach. Based on the training results, four-layer AI 

model was selected to do the predictions. AI model was compared it to the Vipulanandan 

Rainfall Model. In predicting the temperature data, using the four-layered AI model the 

coefficient of determination (R
2
) was 0.86 and the RMSE (root mean square error) was 

9.22 inches. The AI model prediction is compared to the experimental data in Fig. 8.  

Vipulanandan Rainfall Model parameters C and D are 0.24 (month/inch)
 
and -5.2 

x10
-3

 /inch respectively. The coefficient of determination (R
2
) was 0.74 and the RMSE 

(root mean square error) was 9.29 inches (Table 4).  Both the AI model and 

Vipulanandan Rainfall  Model predicted are compared with the data in  Fig.8.  

 

 

 
 

Figure 8 Comparing the Cumulative Monthly Rainfall Predictions from 2015 to 

2020 

 



Proceedings                                                                                      CIGMAT-2020 Conference & Exhibition 

I-33 
 

Table 4: Model correlation parameters for temperature and rainfall 

 

  ANN Model 

Temperature/Rainfall 

Model 

Parameter R
2
 RMSE R

2
 RMSE 

Temperature 0.94 2.75 0.91 3.48 

Rainfall 0.86 9.22 0.74 9.29 
 

Monitoring of Resistance, Strain and Temperature 

 The smart cement was mixed in the field and used for cementing the field well. It 

is important to identify the measureable parameters in the cement sheath and also 

determine the changes with time and depth. Fiber optics are used for monitoring and it 

depends in the changes in the strain in the cement sheath. The strain in the cement will be 

influenced by the cement curing, stress and temperature in the cement sheath. Over the 

past 4.5 years (over 1600 days) thousands of data has been collected on the monitoring 

parameters. It is important to quantify the changes in the measuring parameters with 

important variable such as depth. In order to investigate the changes with depth, top level 

(CH soil), middle level (above the water table, CH soil ) and the bottom level (below the 

water table, CL soil) were selected for investigation. 

 

Top Level 

 

Resistance (R): The top level was about 1 ft. below the ground surface. The initial 

resistivity of the smart cement measured using the two probes was 1.03 Ω.m comparable 

to the laboratory mixed cement of 1.05 Ω.m. The resistance in the top level changed from 

22 Ω to 221 Ω, about 9.05 times (905%) change in the resistance (Figure 9). The changes 

in the cement sheath resistance were not uniform but overall showed continuous increase. 

The rapid increase in the cement resistance was due to the lowering of the environmental 

temperature and losing of moisture in the cement. The rapid decrease in the cement 

resistance was due to increase in the environmental temperature and saturation of the 

cement due to flooding. 

Temperature (T): The temperature continuously fluctuated with time with no clear 

trend. Over the 4.5 years the minimum and maximum measured temperature in the 

cement sheath was  68
o
F (20.1

o
C) and 97.2

o
F(36.2

o
C), maximum change of 42.8% (Fig. 

9). The average temperature at the top level was about 77.7
o
F (25.4 ᵒC), a 14% decrease 

from initial temperature of 90.3
o
F (32.4

o
C) which would have been influenced by cement 

hydration.  

Strain (S): The strain gage resistance increased from 123 Ω to 133 Ω during the period 

of 4.5 years with some fluctuations. The change in strain gage resistance was about 8.1%. 

The tensile strain at the top level was about 3.3xE-6. 

 Based on the measured monitoring parameters in the cement sheath, change in 

electrical resistance showed the largest change compared to the changes in temperature 

and strain. Hence it is important to develop models to predict this change with time for 

monitoring the well.  
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Figure 9: Electrical Resistance, Strain and Temperature variation in top level after 

4.5 years. 

 

Middle Level 

 

Resistance (R): The middle level was about 15 ft. below the ground level and above the 

water table. The initial resistivity of the smart cement measured using the two probes was 

1.24 Ω.m higher than top level of 1.03 Ω.m and the laboratory mixed cement of 1.05 

Ω.m. The resistance in the top level changed from 26.5 Ω to 182.9 Ω, about 5.90 times 

(590%) change in the resistance (Figure 10). The changes in the cement sheath resistance 

were not uniform but overall showed continuous increase. The rapid increase in the 

cement resistance was due to the lowering of the environmental temperature and losing of 

moisture in the cement. The rapid decrease in the cement resistance was due to increase 

in the environmental temperature and saturation of the cement due to rising of the water 

table because of flooding. 

Temperature (T): The temperature continuously fluctuated with time with no clear 

trend. Over the 4.5 years the minimum and maximum measured temperature in the 

cement sheath was 70.9
o
F (21.6

o
C) and 95.5

o
F(34.7

o
C), maximum change of 34.7% (Fig. 

10). The average temperature at the middle level was about 78.8
o
F (26 ᵒC), a 18% 

decrease from initial temperature of 96.4
o
F (35.8

o
C) which would have been influenced 

by cement hydration.  

Strain (S): The strain gage resistance increased from 124 Ω to 132 Ω during the period 
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of 4.5 years with some fluctuations. The change in strain gage resistance was about 6.5%. 

The tensile strain in the middle level was 3.65xE-6.  

 Based on the measured monitoring parameters in the cement sheath, change in 

electrical resistance showed the largest change compared to the changes in temperature 

and strain. Hence it is important to develop models to predict this change with time for 

monitoring the well. 

 

 

 
 

 

Figure 10: Electrical Resistance, Strain and Temperature variation in middle level 

after 4.5 years. 

 

Bottom Level 

 

Resistance (R): The bottom level was at 36 ft. below the ground and was under the water 

table.  

The initial resistivity of the smart cement measured using the two probes was 1.32 Ω.m 

higher than top level of 1.03 Ω.m and the laboratory mixed cement of 1.05 Ω.m. The 

resistance in the bottom level changed from 28.2 Ω to 104.9 Ω, about 2.72 times (272%) 

change in the resistance (Figure 11). The changes in the cement sheath resistances were 

uniform and overall showed continuous increase. The minor fluctuations are due to 

changes in water table level due to flooding. 

Temperature (T): The temperature fluctuated with time but was much less than the 

middle and top levels. Over the 4.5 years the minimum and maximum measured 

temperature in the cement sheath was  71.1
o
F (21.7

o
C) and 91.4

o
F(33

o
C), maximum 
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change of 28.6% (Fig. 11). The average temperature at the bottom level was about 77
o
F 

(25ᵒC), a 15.8% decrease from initial temperature of 91.4
o
F (33

o
C) which would have 

been influenced by cement hydration.  

Strain (S): The strain gage resistance increased from 124 Ω to 133 Ω during the period 

of 4.5 years with some fluctuations. The change in strain gage resistance was about 8.6%. 

The tensile strain at the bottom level was 4.8xE-6. 

Based on the measured monitoring parameters in the cement sheath, change in 

electrical resistance showed the largest change compared to the changes in temperature 

and strain. Hence it is important to develop models to predict this change with time for 

monitoring the well. 

 

 
 

Figure 11 Electrical Resistance, Strain and Temperature variation in bottom level 

after 4.5 years. 

Comparing Resistance Change 

 

From the measurements made at all levels, clearly the electrical resistance change 

was the highest. Hence it is of interest compare the changes and trends in the electrical 

resistance with the depth. The electrical resistance change was not uniform in the top and 

middle levels in the field well. The electrical resistance changed by 905% in the top level 

close to the surface. The top level also showed the largest fluctuation in the resistance 

changes based on the weather patters. Both the environmental temperature and rainfall 

influenced the fluctuation in the resistance at the top level (Fig. 12) The electrical 

resistance changed by 590% in middle level (15 feet below the ground)  with much less 
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in fluctuation compare to the top level.  The electrical resistance change at the bottom 

level, below the water table, was 272% (Fig. 12). Also the difference in the electrical 

resistance changes was due to difference in cement curing conditions of the field well. 

The top level was exposed to outside temperature and had air curing, while the middle 

level was under moisture curing and bottom level was cured under water. 

 

 

 

 

Figure 12. Electrical Resistance data for top, middle and bottom levels in field well 

for 4.5 years. 

Prediction of Electrical Resistivity of Smart Cement  

 

Top Level 

 

The value of initial resistivity of smart cement was 1.03 Ω.m. immediately after 

mixing. The electrical resistivity of smart cement was 10.4 Ω.m. after 4.5 years of curing 

(Figure 13). The time for minimum resistivity was 195 minutes after mixing (Table 5). 

Based on the preliminary analyses, AI model with for layers of ANN was selected predict 

the resistivity change with time. Over 30 data was used perform the BPNN and also 

predict the experimental trend. Curing Model parameters p1 and q1 were 0.76 and 0.24 

respectively after 4.5 years of curing (Table 5). Also the other curing model parameters 

are summarized in Table 5. The value of RMSE (root mean square error) for curing 

model was 0.86 Ω.m, while it was 1.02 Ω.m for the AI model. The value of R
2
 for curing 

model was 0.97 while it was 0.91 for the AI model (Table 6). Thus, Vipulanandan curing 
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model had comparatively better prediction for long term compared to AI model. 
  
 

 
 

Figure 13. Comparing the Prediction of  Electrical Resistivity at the Top Level 

Using the AI Model  and Vipulanandan Curing Model up to 4.5 years. 

 

Middle Level 

 

The value of initial resistivity of smart cement was 1.24 Ω.m. immediately after 

mixing. The electrical resistivity of smart cement was 8.5 Ω.m. after 4.5 years of curing 

(Figure 14). The time for minimum resistivity was 195 minutes after mixing (Table 5). 

Based on the preliminary analyses, AI model with for layers of ANN was selected predict 

the resistivity change with time. Over 30 data was used perform the BPNN and also 

predict the experimental trend. Curing Model parameters p1 and q1 were 0.78 and 0.22 

respectively after 4.5 years of curing (Table 5). Also the other curing model parameters 

are summarized in Table 5. The value of RMSE (root mean square error) for electrical 

resistivity model was 1.44 Ω.m while it was 1.73 Ω.m for AI model. The value of R
2
 for 

electrical resistivity model was 0.91 while it was 0.61 for AI model (Table 6). Thus, 

Vipulanandan curing model had comparatively better prediction for long term compared 

to AI model. 
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Figure 14. Comparing the Prediction of  Electrical Resistivity at the Middle Level 

Using the AI Model  and Vipulanandan Curing Model up to 4.5 years. 

 

Bottom Level 

 

The value of initial resistivity of smart cement was 1.32 Ω.m immediately after 

mixing. The electrical resistivity of smart cement was 4.91 Ω.m. after 4.5 years of curing 

(Figure 15). The time for minimum resistivity was 288 minutes after mixing (Table 5). 

Based on the preliminary analyses, AI model with for layers of ANN was selected predict 

the resistivity change with time. Over 30 data was used perform the BPNN and also 

predict the experimental trend. Curing Model parameters p1 and q1 were 0.84 and 0.15 

respectively after 4.5 years of curing (Table 5). Also the other curing model parameters 

are summarized in Table 5. The value of RMSE (root mean square error) for electrical 

resistivity model was 0.25 Ω.m while it was 0.43 Ω.m for AI model. The value of R
2
 for 

electrical resistivity model was 0.95 while it was 0.86 for AI model (Table 6). Thus, 

Vipulanandan curing model had comparatively better prediction for long term compared 

to the AI model. 
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Figure 15. Comparing the Prediction of  the Electrical Resistivity at the Bottom 

Level Using the AI Model  and Vipulanandan Curing Model up to 4.5 years. 

 

Table 5. Electrical resistivity model parameters for smart cement in field for 4.5 

years. 

 

  Curing Model 

Level 
ρo (Ω.m.) 

tmin 

(min) 
to (min) p1 q1 

Top 1.03 195 250 0.76 0.24 

Middle 1.24 195 300 

   

0.78 0.22 

Bottom 1.32 288 136 0.84 0.15 

 

Table 6. Correlation parameters for ANN Model and Resistivity model for smart 

cement in field after 4.5 years. 

  ANN Model Curing Model 

Level R
2
 RMSE R

2
 RMSE 

Top 0.91 1.02 0.97 0.86 

Middle 0.61 1.73 0.91 1.44 

Bottom 0.86 0.43 0.95 0.25 
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Piezoresistivity Prediction 

 

It is important to demonstrate the piezoresistivity of smart cement in the field. 

Also it is important to show the sensitivity of smart cement for small pressure changes. 

Hence the test was performed at 10 psi (0.07 MPa) increments up to 80 psi (0.55 MPa). 

The maximum value of piezoresistive strain for smart cement after 4.5 years of curing 

was 13.5% at a stress of 0.55 MPa (Figure 16). This is a clear demonstration of 

sensitivity of the smart cement. Also by measuring the piezoresistive strain in the smart 

cement it will be possible predict the pressure in the casing using the models. The value 

of model parameters p2 and q2 for piezoresistivity model are 0.025 and 0.417. AI model 

had a RMSE of 0.015 Ωm value compared to piezoresistivity model RMSE of 0.02 Ωm 

with a coefficient of determination of 0.99 (Table 7). Hence both models predicted the 

piezoresistive behavior of the smart cement. 

   

 

Figure 16. Piezoresistive Strain for smart cement in the field after 4.5 years of 

curing. 

 

Table 7: Correlation parameters for ANN Model and piezoresistivity model for 

smart cement in field after 4.5 years. 

 

Pressure Test on Smart Cement 

ANN Model Piezoresistivity Model 

R
2
 RMSE(Ωm) R

2
 RMSE (Ωm) 

0.99 0.015 0.99 0.02 
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5. Conclusions 

In this study Artificial Intelligent (AI) models were developed and used to predict 

behavior of smart cement and weather using the data collected form the laboratory tests 

and field tests and compared the predictions to the Vipulanandan Models. Over 1500 data 

were used in this study. Based on this study following conclusions are advanced: 

 

1. AI models with one, two, three and four layers of artificial neural networks were 

evaluated using the laboratory and field data with the statistical parameter 

coefficient of determination (R
2
) and root mean square error (RMSE). Based on 

the type of available data both Generalized Regression Neural Networks (GRNN) 

and Back Propagation Neural Network (BPNN) were used to train the AI models.  

2. Based on the laboratory data and field data, electrical resistivity showed the 

largest variation compared to strain and temperature changes. Hence electrical 

resistivity was selected as the monitoring parameter for the smart cement. 

3. AI model predicted the long-term smart cement curing with the resistivity 

parameter very well and was comparable to the Vipulanandan Curing Model.AI 

model did not predict the short-term cuing well compared to the Vipulanandan 

Curing Model. 

4. AI model predicted the smart cement piezoresistive behavior in the laboratory and 

field  very well. Vipulanandan p-q piezoresisitive model predicted the behavior 

well. 

5. There is a need to further improve the AI perditions of resistivity change in the 

field. Vipulanandan curing model predicted the behavior very well. 

 

6. Acknowledgements 

This study was supported by the Department of Energy (DOE/NETL/RPSEA). 

National Science Foundation (NSF-I Corp), the Center for Innovative Grouting Materials 

and Technology (CIGMAT) and the Texas Hurricane Center for Innovative Technology 

(THC-IT) at the University of Houston, Texas. Sponsors are not responsible for the entire 

conclusion made from this study. 

 

7. References 

1. Alexander, I., and Morton, H. (1990). An Introduction to Neural Computing, 1
th

 

Ed., Chapman & Hall, Inc., pp. X-XV, Padstow, Cornwall. 

2. Altunkaynak, A. (2007). “Forecasting Surface Water Level Fluctuations of Lake 

Van by Artificial Neural Networks.” Water Resources Management, 21, 399-408. 

3. Armour, T., Groneck, P., Keeley, J. and Sharma, S. (2000). “Micropile Design and 

Construction Guidelines Implementation Manual,” FHWA-SA-97-070. 

4. Bhattacharyya, P. (2011) “Neural Networks: Evolution, Topologies, Learning 

Algorithms and Applications”. IGI Global Publisher. 

5. Choolaei, M., Rashidi, A. M., Ardjmand, M., Yadegari, A. and Soltanian, H. 

(2012). The effect of nanosilica on the physical properties of oil well 

cement. Materials Science and Engineering: A, 538, 288-294. 

6. Demircan, E., Harendra, S. and Vipulanandan, C.(2011) "Artificial Neural 

Network and Nonlinear Models for Gelling Time and maximum Curing 



Proceedings                                                                                      CIGMAT-2020 Conference & Exhibition 

I-43 
 

Temperature Rise in Polymer Grouts,” Journal of Materials in Civil 

Engineering, Vol. 23, No. 4 , pp. 1-6, 2011. 

7. Hammoudi, A., Moussaceb, K., Belebchouche, C. and Dahmoune, F. (2019) 

“Comparison of artificial neural network (ANN) and response surface 

methodology (RSM) prediction in compressive strength of recycled concrete 

aggregates”. Construction and Building Materials, 2019. 

8. Han, B., Guan, X. and Ou, J. (2007). Electrode design, measuring method and 

data acquisition system of carbon fiber cement paste piezoresistive 

sensors. Sensors and Actuators A: Physical, 135(2), 360-369.  

9. Han, B., Zhang, L. Zhang, C., Wang, Y., Yu, X. and Ou, J. (2016). 

Reinforcement Effect and mechanism of Carbon Fibers to Mechanical and 

Electrically Conductive Properties of Cement-Based Materials, Construction 

and Building materials, Vol. 125, pp. 479-489. 

10. Houk, A. N. Self-Sensing Cementitious Materials. (PhD dissertation), 

University of Kentucky, 2017. 

11. Hou, P., Qian, J., Cheng, X. and Shah, S. P. (2015). Effects of the pozzolanic 

reactivity of nanoSiO2 on cement-based materials. Cement and Concrete 

Composites, 55, 250-258. 

12. Labibzadeh, M., Zahabizadeh, B. and Khajehdezfuly, A. (2010). Early-age 

compressive strength assessment of oil well class G cement due to borehole 

pressure and temperature changes. Journal of American Science, 6(7), 1-7. 

13. Mangadlao, J. D., Cao, P. and Advincula, R. C. (2015). Smart cements and 

cement additives for oil and gas operations. Journal of Petroleum Science and 

Engineering, 129, 63-76. 

14. McCarter, W. J., Starrs, G. and Chrisp, T. M. (2000). Electrical conductivity, 

diffusion, and permeability of Portland cement-based mortars. Cement and 

Concrete Research, 30(9), 1395-1400. 

15. McCarter, W. J., Chrisp, T. M., Starrs, G. and Blewett, J. (2003). 

Characterization and monitoring of cement-based systems using intrinsic 

electrical property measurements. Cement and Concrete Research, 33(2), 197-

206. 

16. McCarter, W. J. (1994). A parametric study of the impedance characteristics of 

cement-aggregate systems during early hydration. Cement and concrete 

research, 24(6), 1097-1110. 

17. Mohammed, A. S. (2017). Electrical resistivity and rheological properties of 

sensing bentonite drilling muds modified with lightweight polymer. Egyptian 

Journal of Petroleum, 10.1016/j.ejpe.2017.10.018. 

18. Mohammed, A.  (2017) . Vipulanandan model for the rheological properties with 

ultimate shear stress of oil well cement modified with nanoclay, DOI 

10.1016/j.ejpe.2017.05.007. 

19. Opeyemi, B., Catalin, T. and Tanveer, Y. (2016) “Application of Artificial 

Intelligence Techniques in Drilling System Design and Operations: A State of the 

Art Review and Future Research Pathways”. SPE Nigeria Annual International 

Conference and Exhibition, August 2016.  



Proceedings                                                                                      CIGMAT-2020 Conference & Exhibition 

I-44 
 

20. Polder, R. B. (2001). Test methods for on-site measurement of resistivity of 

concrete—a RILEM TC-154 technical recommendation. Construction and 

building materials, 15(2), 125-131. 

21. Rogers, M. J., Dillenbeck, R. L. and Eid, R. N. (2004). Transition Time of Cement 

Slurries, Definitions and Misconceptions, Related to Annular Fluid Migration. SPE 

Annual Technical Conference and Exhibition. https://doi.org/10.2118/90829-MS. 

22. Rosenblatt, F. (1962). Principles of Neurodynamics: Perceptrons and the Theory of 

Brain Mechanisms, Spartan Books, New York. 

23. Sadiq, T. and Nashawi, I. S. (2000) “Using Neural Networks for Prediction of 

Formation Fracture Gradient”, SPE/PS-CIM International Conference on 

Horizontal Well Technology, 2000. 

24. Saridemir, M. (2009). “Prediction of Compressive Strength of Concretes 

Containing Metakolin and Silica Fume by Artificial Neural Networks.” Advances 

in Engineering Software, 40, 350-355. 

25. Shadravan, A. and Amani, M. (2012). HPHT 101-what petroleum engineers and 

geoscientists should know about high pressure high temperature wells 

environment. Energy Science and Technology, 4(2), 36-60. 

26. Shahab, D. (2000) “Virtual-Intelligence Applications in Petroleum Engineering: 

Part 1-Artificial Neural Networks”. SPE 58046-JPT, 2000. 

27. Vipulanandan, C. and Paul, E. (1990). Performance of epoxy and polyester 

polymer concrete. Materials Journal, 87(3), 241-251. 

28. Vipulanandan, C. and Krishnan, S., (1993) "XRD Analysis and Leachability of 

Solidified Phenol-Cement Mixtures," Cement and Concrete Research, Vol. 23, pp. 

792-802. 

29. Vipulanandan, C. and Sett, K. (2004). Development and characterization of 

piezoresistive smart structural materials. In Proceedings of the Ninth Biennial 

ASCE Aerospace Division International Conference on Engineering, 

Construction, and Operations in Challenging Environments (pp. 656-663). 

30. Vipulanandan, C. and Garas, V. (2008). Electrical resistivity, pulse velocity, 

and compressive properties of carbon fiber-reinforced cement mortar. Journal of 

Materials in Civil Engineering, 20(2), 93-101. 

31. Vipulanandan, C. and Prashanth, P. (2013). Impedance spectroscopy 

characterization of a piezoresistive structural polymer composite bulk 

sensor. Journal of Testing and Evaluation, 41(6), 1-7. 

32. Vipulanandan, C., Ali, K., Basirat, B.,  A. Reddy, Amani, N., Mohammed, A. 

Dighe, S., Farzam, H. and W. J. Head (2016), “Field Test for Real Time 

Monitoring of Piezoresistive Smart Cement to Verify the Cementing Operations 

,” OTC-27060-MS. 

33. Vipulanandan, C. and Mohammed, A. S. (2014). Hyperbolic rheological model 

with shear stress limit for acrylamide polymer modified bentonite drilling 

muds. Journal of Petroleum Science and Engineering, 122, 38-47. 

34. Vipulanandan, C. and Mohammed, A. (2015). Smart cement rheological and 

piezoresistive behavior for oil well applications. Journal of Petroleum Science 

and Engineering, 135, 50-58. 

35. Vipulanandan, C., Krishnamoorti, R., Mohammed, A., Boncan, V., Narvaez, G., 

Head, B. and Pappas, J. M. (2015). Iron Nanoparticle Modified Smart Cement 



Proceedings                                                                                      CIGMAT-2020 Conference & Exhibition 

I-45 
 

for Real Time Monitoring of Ultra Deepwater Oil Well Cementing 

Applications, OTC-25842-MS. 

36. Vipulanandan, C. and Mohammed, A. (2015). Smart cement modified with iron 

oxide nanoparticles to enhance the piezoresistive behavior and compressive 

strength for oil well applications. Smart Materials and Structures, 24(12), 

125020. 

37. Vipulanandan, C. and Mohammed, A. (2017). Rheological Properties of 

Piezoresistive Smart Cement Slurry Modified With Iron-Oxide Nanoparticles 

for Oil-Well Applications. Journal of Testing and Evaluation, 45(6). 

38. Vipulanandan, C. and Mohammed, A. (2015). XRD and TGA, Swelling and 

Compacted Properties of Polymer Treated Sulfate Contaminated CL 

Soil. Journal of Testing and Evaluation, 44(6). 

39. Vipulanandan, C., and Mohammed, A. (2015). Effect of nanoclay on the 

electrical resistivity and rheological properties of smart and sensing bentonite 

drilling muds. Journal of Petroleum Science and Engineering, 130, 86-95. 

40. Vipulanandan, C., Ali, M., Basirat, B., Reddy, A., Amin, N., Mohammed, A., & 

Farzam, H. (2016). Field Test for Real Time Monitoring of Piezoresistive Smart 

Cement to Verify the Cementing Operations. In Offshore Technology Conference. 

Offshore Technology Conference. 

41. Vipulanandan, C., Mohammed, A., and Samuel, R. G. (2017). Smart Bentonite 

Drilling Muds Modified with Iron Oxide Nanoparticles and Characterized Based 

on the Electrical Resistivity and Rheological Properties with Varying Magnetic 

Field Strengths and Temperatures. In Offshore Technology Conference. Offshore 

Technology Conference. 

42. Vipulanandan, C., and Mohammed, A., (2017) “Rheological Properties of 

Piezoresistive Smart Cement Slurry Modified With Iron Oxide Nanoparticles for 

Oil Well Applications.” Journal of Testing and Evaluation, ASTM, Vol. 45 

Number 6, pp. 2050-2060. 

43. Vipulanandan, C., and Ali, K., (2018) “Smart Cement Grouts for Repairing 

Damaged Piezoresistive Cement and the Performances Predicted Using 

Vipulanandan Models” Journal of Civil Engineering Materials, American Society 

of Civil Engineers (ASCE), Vol. 30, No. 10, Article number 04018253. 
44.  Vipulanandan, C., and Amani, N., (2018) “Characterizing the Pulse Velocity and 

Electrical resistivity Changes In Concrete with Piezoresistive Smart Cement 

Binder Using Vipulanandan Models” Construction and Building Materials, Vol. 

175, pp. 519-530. 
45.  Vipulanandan, C., and Mohammed, A., (2018) “Smart Cement Compressive 

Piezoresistive Stress-Strain and Strength Behavior with Nano Silica Modification, 

Journal of Testing and Evaluation, ASTM, doi 10.1520/JTE 20170105. 

46. Vipulanandan, C., G. Panda, G., Maddi,A.R., Wong, G. and Aldughather, A.   

(2019) “Characterizing Smart Cement Modified with Styrene Butadiene Polymer 

for Quality Control, Curing and to Control and Detect Fluid Loss and Gas Leaks 

Using Vipulanandan Models,” Offshore Technology Conference (OTC) 2019, 

OTC-29581-MS, (OTC-2019), CD Proceeding, Houston, Texas, May 2019. 



Proceedings                                                                                      CIGMAT-2020 Conference & Exhibition 

I-46 
 

47. Wei, X., Xiao, L. and Li, Z. (2012). Prediction of standard compressive strength 

of cement by the electrical resistivity measurement. Construction and Building 

Materials, 31, 341-346. 

48. Xiao, L. and Li, Z. (2008). Early-age hydration of fresh concrete monitored by 

non-contact electrical resistivity measurement. Cement and Concrete 

Research, 38(3), 312-319. 

 
 
 
 




