# Conductivity of Water-in-Oil Microemulsion System

Fang Li and C. Vipulanandan

Center for Innovative Grouting Material and Technology (CIGMAT) Department of Civil and Environmental Engineering University of Houston, Houston, TX 77204-4003 Phone: 713-743-4291 � � � � � � � � � � � E-mail: Fang.li@mail.uh.edu

### Abstract

Electrical conductivity measurement was used in characterizing the water-in-oil microemulsion system and its relationship to the microstructure and composition of the system is discussed.

#### **1. Introduction**

Microemulsions are thermodynamically stable complex fluids composed of water and oil domains that are separated by a surfactant monolayer, which reduces the unfavorable oil-water contact. The topology of the oil and water domains can vary, depending on the compositions and temperature. Distinct, dispersed nanometer-size, surfactant-coated water droplets are maintained in a polar solvent at low volume fractions of water and this system is called a reversed micellar phase or a water-in-oil microemulsion.

Microemulsions have applications in enhanced oil recovery, pharmaceuticals and cosmetic industries. One of the most important applications is that, water-in-oil microemulsions have been extensively used as microreactors to prepare monodisperse nanosized particles, such as metal, metal borides and metal oxides [1]. Two basic methods of microemulsion-mediated materials synthesis are shown in Fig.1.

### 2.Objective

In this study, the potential use of electrical conductivity measurement to characterize the microemulsion system was investigated.

### **3.Testing Program**

Conductivity measurement: • A mixture of known weights of surfactant, co-surfactant and oil was placed in the beaker at a constant temperature. The initial conductivity was recorded, and then water was added continuously to the surfactant solution with constant stirring. The conductivity was measured using a Thermo Orion conductivity meter, and was measured to an accuracy of •0.5%.

### **4.Results and Discussion**

Variation in conductivity with increasing water content for three [CTAB]/[water] ratio (S) are shown in Fig. 2. The conductivity increased upon addition of water into the emulsion system. At a certain value of  $W_{\alpha}$ 

(water content), it will sharply decrease if water is continuously added. The increase in conductivity is due to the phenomena known as percolation of charges through the droplet clusters [2-3]. Continuously adding water into the system will make the entire emulsion system unstable, and phase separation occurs, resulting in low conductivity. Based on this measurement, when S=20, addition of 10% water phase into the octane-surfactant-mixture was the optimum, at this point the water content is the highest and still maintains  $\clubsuit$  the water droplets in the oil phase.

The surface tension measurement and conductivity measurement results are shown in

♦ Fig. 3. From the curve in Fig. 3, it can be estimated that the CMC of CTAB was about 0.4g/L from the above measurement. It must be noted that higher concentrations of CTAB (compared to CMC) are used in the microemulsion system.

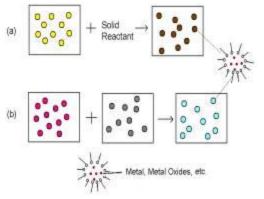



Fig. 1 Microemulsion-mediated synthesize system[1]

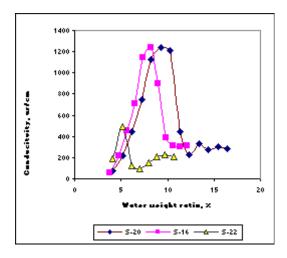



Fig. 2 Conductivity versus water weight ratio in the CTAB/1-butanol/n-octane system conductivity

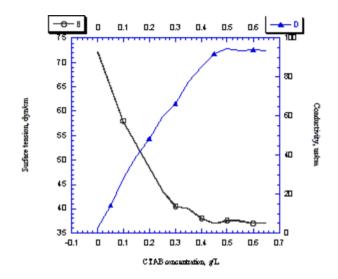



Fig. 3 CTAB Critical micelle concentration measurement (left) surface tension(right).

## 5.Conclusion

Conductivity measurement can be used to characterize the microemulsion system and determine the maximum amount of water that can be added to maintain the water-in-oil system.

### 6. Acknowledgement

This study is being supported by Texas Center for Superconductivity at the University of Houston.

### 7. Reference

[1] Promod Kumar, K.L.Mittal, Handbook of Microemulsion science and technology (4, 1999)

[2] Mauro Giustini, Gerardo Palazzo, Giuseppe Colafemmina, � Microstructure and Dynamics of the water-in-oil CTAB/npentanol/n-haxane/water microemulsion: A spectroscopic and conductivity study �, Journal of Physical Chemistry, 100, 3190-3198(1996)

[3] A.Molski and E.Dutkiewicz, �Electrical conductivity and percolation in water-in-oil microemuslions �, Polish Journal of Chemistry, 70, 959-971(1996).

If you have any questions, please contact <u>Dr. C.Vipulanandan</u> Copyright � 1998 University of Houston