New Solutions for Non-Destructive Evaluation of Infrastructure

Russell J. Miller, Ph.D.

Vision Underground Inc. 478 Parkview Ave., Golden, CO 80401 Tel. 303-526-4748, fax 303-526-2009, Russell.Miller@att.net

Abstract

There are many powerful technologies developed in other industries that are directly applicable to the non-destructive evaluation of civil infrastructure. \blacklozenge Applications include: excavations, utilities, foundations, roads, bridges, buildings, and other structures. \diamondsuit These same technologies are valuable for quality control - being capable of evaluating the effectiveness of construction, installation or rehabilitation efforts. A number of case histories are as follows:

<u>Characterization of excavations under critical structures</u> \clubsuit Borehole radar and seismic techniques were used to determine obstacles to excavation for several boring operations passing under highways and runways. \clubsuit Obstacles located included boulders, wood and general trash. \clubsuit The collective beneficial impact of these surveys was estimated at millions of dollars. \clubsuit Has application to any situation where a boring or drilling operation has the potential to encounter underground obstacles that could significantly impact excavation and cost.

Evaluation of existing utility \blacklozenge Magnetic susceptibility plus standard and deep induction were effective in locating other utilities adjacent to an existing clay pipe sewer that was to be replaced by pipe bursting. \diamondsuit Due to the sensitive nature of the facility, there were major concerns about damage to adjacent utilities by the pipe bursting operation. \diamondsuit In addition to known utilities, several unknown utilities were located, as well as several sections of pipe that had been repaired or reinforced with steel casings, all of major concern for a pipe bursting operation. \diamondsuit It was estimated 100s of thousands of dollars were saved in problems avoided by performing this survey. \diamondsuit Applications include pipe bursting and pipe over-boring where damage to adjacent utilities or structures is a concern. \diamondsuit Also, any time conditions outside an existing pipe need to be known, such as the presence of voids or contamination. \diamondsuit

<u>Grouting effectiveness evaluation</u> \blacklozenge Borehole density measurements were used to characterize the effectiveness and extent of compaction grouting. \diamondsuit The vertical grout column shape could be implied from the results, and actual *in situ* strengths would be determinable with the addition of a seismic shear wave measurement. \diamondsuit Has application to situations where *in situ* soil properties need to be known, or where the effectiveness of a soil treatment process needs to be evaluated. \diamondsuit

Backfill QA/QC \blacklozenge Density and moisture content logs were used to determine backfill compaction in trenches. \diamondsuit The method was better, faster and less costly than conventional compaction evaluation techniques. \diamondsuit Compaction is determined continuously to full depth of backfill, and can be used during construction to allow correction of any problems while the contractor is still on site. \diamondsuit Has application to any situation where backfill is being used. \diamondsuit

Void detection • Ground-penetrating radar was used to determine the extent of a void outside of a storm sewer pipe. **•** Changes in soil conditions were also imaged. **•** This allowed the city to make repairs before a collapse occurred. **•** Has application to the evaluation of existing pipe for wall damage, void identification, and leak detection. **•**

<u>Subsurface stratigraphy determination</u> - Borehole radar was used to map formation thickness out from an active mining operation where surface access was limited. O Demonstrated potential for saving millions in development of uneconomic reserves. O Has application to any situation where you need to know ground conditions ahead of excavation. O

Detection of adjacent openings and structure ♦ Ground-penetrating radar and seismic techniques were used to locate other tunnels/bores that might be too close for safely continuing excavation. **♦** Has application to situations where there may be structures adjacent to an ongoing excavation. **♦**

If you have any questions, please contact <u>Dr. C.Vipulanandan</u> Copyright � 1998 University of Houston