Failure of Cast Iron buried Water Mains

Kaushik Kumar Sirvole and C. Vipulanandan, PhD, P.E.
Centre for Innovative Grouting Materials and Technology (CIGMAT)
Department of Civil and Environmental Engineering
University of Houston, Houston, TX, 77204-4003
Tel: (713)743-4291 Email Address: ksirvole@uh.edu

Abstract
The problem of aging cast iron water pipes manifested in breaks and leaks in distribution systems is common to all municipalities throughout the world. Based on limited literature review, here we indentify and study the various failure patterns and the causes leading to such failures. The different failure types are broadly classified and tabulated.

1. Introduction
The water distribution systems all over the world experience hundreds of issue regarding failure of the pipes in the network both major and minor. It has been estimated that approximately 25% of the water in the distribution systems is lost due to pipeline leaks. Based on the study we understand that grey cast iron pipes are the one most prone to failure, corresponding to more than 85% of the total failures. Most of the cast iron pipelines are old pipes, more than 60 years old, with considerable strength loss due to aging and corrosion resulting in higher incidence of failures.

2. Objective
The objective of the project is to identify different failure modes, causes, and mechanism of the buried cast iron water pipelines mains in general.

3. Results and tabulations
Based on the limited study, we can broadly classify these failures into 3 categories. The failure attributed to corrosion, the failure due to excessive stresses and the failure at the joints. Many times the failure occurs as a combination of different types. The mechanical properties of the cast iron pipe mains are discussed and testing methods are listed by Seica and Packer (2000). Corrosion of the pipe can occur both from inside and from the outside of the pipe. Corrosion is an electrochemical process that results in gradual atonement of the metal and hence the loss of strength of the pipe wall. The pitting failure corresponds to the type where there is localized external corrosion that leads to formation of small ‘pitting holes’. Graphitization relates to process where the metal constituents of the pipe degrade, eventually leaving only a carbon shell, which is not as strong as the original pipe hence making the pipe wall vulnerable to bursts.

Corrosive soils are classified by the AWWA (1999), the soils with low pH, low Resistivity and significant presence of sulphate reducing bacteria. Other secondary reasons leading to external corrosion are the stray currents that the pipe conducts from the ground, hydrogen embrittlement resulting from unintended or misapplication of cathodic protection. The failure due to external corrosion has been extensively studied by Doyle et al (1999). The nature of internal corrosion depends of the aggressive water properties and its chemical composition and its interaction with the internal pipe wall. Other type of failure is attributed to excessive hoop or axial stresses resulting from the Ambient temperature differences, Transient conditions leading to ‘water hammer’ effects, freeze-thaw effects due to changing seasons, soil properties settlements or expansions periodically. The failure at the joints results as a combination of different stress, corrosion conditions.

Table 1: Types of Failure
## Failure type

<table>
<thead>
<tr>
<th>Modes of Failure</th>
<th>Causes of failure</th>
<th>References</th>
</tr>
</thead>
</table>

### 5. Conclusions
Based on the limited literature review different modes and causes of the failure in grey cast iron buried water pipelines are identified. The study identifies corrosion as the major cause of failure to cast iron water mains. Corrosion control measures greatly reduce the incidence of failure.

### 6. References